Locating-Total Domination Number in Strong Product of Two Paths
نویسندگان
چکیده
منابع مشابه
The domination number of Cartesian product of two directed paths
4 Let γ(Pm2Pn) be the domination number of the Cartesian product of directed paths Pm and Pn for m,n ≥ 2. In [13] Liu and al. determined the value of γ(Pm2Pn) 6 for arbitrary n and m ≤ 6. In this work we give the exact value of γ(Pm2Pn) for any m,n and exhibit minimum dominating sets. 8 AMS Classification[2010]:05C69,05C38. 10
متن کاملThe crossing number of the strong product of two paths
Let Pm Pn be the strong product of two paths Pm and Pn. In 2013, Klešč et al. conjectured that the crossing number of Pm Pn is equal to (m − 1)(n − 1) − 4 for m ≥ 4 and n ≥ 4. In this paper we show that the above conjecture is true except when m = 4 and n = 4, and that the crossing number of P4 P4 is four.
متن کاملTotal Domination Number of Cartesian Product Networks
Let denote the Cartesian product of graphs and A total dominating set of with no isolated vertex is a set of vertices of such that every vertex is adjacent to a vertex in The total domination number of is the minimum cardinality of a total dominating set. In this paper, we give a new lower bound of total domination number of using parameters total domination, packing and -domination numbers of ...
متن کاملTotal Roman domination subdivision number in graphs
A {em Roman dominating function} on a graph $G$ is a function $f:V(G)rightarrow {0,1,2}$ satisfying the condition that every vertex $u$ for which $f(u)=0$ is adjacent to at least one vertex $v$ for which $f(v)=2$. A {em total Roman dominating function} is a Roman dominating function with the additional property that the subgraph of $G$ induced by the set of all vertices of positive weight has n...
متن کاملDOMINATION NUMBER OF TOTAL GRAPH OF MODULE
Let $R$ be a commutative ring and $M$ be an $R$-module with $T(M)$ as subset, the set of torsion elements. The total graph of the module denoted by $T(Gamma(M))$, is the (undirected) graph with all elements of $M$ as vertices, and for distinct elements $n,m in M$, the vertices $n$ and $m$ are adjacent if and only if $n+m in T(M)$. In this paper we study the domination number of $T(Gamma(M))$ a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: DEStech Transactions on Computer Science and Engineering
سال: 2020
ISSN: 2475-8841
DOI: 10.12783/dtcse/cmso2019/33632